环亚官网老虎

从正、负极补锂角度,盘点近年来预锂化技术的研究最新进展(下)
发布时间:2020-08-13    浏览次数:26

二、正极补锂技术

典型的正极补锂是在正极合浆过程中添加少量高容量材料,在充电过程中,Li+从高容量材料中脱出,补充首次充放电的不可逆容量损失。目前,作为正极补锂添加剂的材料主要有: 富锂化合物、基于转化反应的纳米复合材料和二元锂化合物等。

1 富锂化合物

使用富锂材料Li1+xNi0.5Mn1.5O4来补偿Si-C|LiNi0.5Mn1.5O4全电池的不可逆容量损失。使用混合正极的电池以0.33C在3.00~4.78V循环100次的容量保持率为75%,而使用纯LiNi0.5Mn1.5O4正极的电池仅为51%。

Li2NiO2也可作为正极补锂添加剂使用,但在空气中的稳定性较差。可使用异丙醇铝对 Li2NiO2进行改性,合成了在空气中稳定的氧化铝包覆的Li2NiO2材料,补锂效果优异。

2 基于转化反应的纳米复合材料

尽管富锂化合物作为补锂添加剂取得了一定的效果,但首次的补锂效果仍受限于较低的比容量。基于转化反应的纳米复合材料,由于存在较大的充/放电电压滞后,在电池首次充电过程中可贡献出大量的锂,而嵌锂反应在放电过程中却不能发生。

Y.M.Sun等研究了M/氧化锂、M/氟化锂、M/硫化锂 (M=Co、Ni和Fe) 作为正极补锂添加剂的性能。

通过合成的纳米Co/氧化锂复合材料在以50mA/g在4.1~2.5V循环,首次充电的比容量达619mAh/g,放电比容量仅为10mAh/g; 在环境空气中暴露8h后,脱锂比容量仅比初始值小了51mAh/g,放置2d后,脱锂比容量仍有418mAh/g,具有良好的环境稳定性,可与商业化电池的生产过程兼容。

氟化锂的锂含量高、稳定性好,是一种潜在的正极补锂材料。利用转化反应构造的M/LiF纳米材料,可以克服 LiF 电导率和离子导率低、电化学分解电位高、分解产物有害等问题,使氟化锂成为一种优良的正极补锂添加剂。硫化锂的理论容量达到1166mAh/g,但作为补锂添加剂使用,仍有很多问题需要解决,如与电解液的兼容性、绝缘、环境稳定性差等。

尽管较富锂化物有更高的补锂容量,但基于转化反应的纳米复合材料在首次补锂后,会残余没有活性的金属氧化物、氟化物和硫化物等,降低电池的能量密度。

3 二元锂化合物

二元锂化合物的理论比容量要高得多。Li2O2、Li2O 和Li3N的理论比容量分别达到1168mAh/g、1797mAh/g和2309mAh/g,只需要少量的添加,就可实现类似的补锂效果。理论上,这些材料在补锂后的残余物是O2、N2等,可在电池形成SEI膜过程中排出的气体。

将商业化的Li3N研磨成粒径为1~5μm的粉体,用作补锂添加剂。半电池体系下,添加了1%和2%Li3N的LiCoO2电极,以0.1C在3.0~4.2V的首次充电比容量分别为167.6 mAh/g和178.4mAh/g,较纯LiCoO2上升了18.0mAh/g、28.7mAh/g。

将商业化Li2O2与NCM混合使用,补偿石墨负极首次充电过程中的锂损失。混合电极中的NCM起到了活性材料和催化剂的双重作用。为了高效地催化分解Li2O2,在正极中加入1%球磨6h得到的NCM。全电池在2.75~4.60V充放电,0.3C可逆比容量为165.4 mAh/g,较石墨|NCM全电池提高了 20.5% 。

测试显示,Li2O2分解释放的氧气会消耗全电池中有限的Li+,导致添加Li2O2的全电池存在明显的容量衰减,但在排出气体后,容量即可得到恢复。电池在实际生产过程中的首次充电是在开放体系中进行的,密封前会排出形成SEI膜和一些副反应产生的气体,因此可减小O2释放造成的影响。

三、结论与展望

对比两种补锂方法,负极补锂路线补锂试剂的( 锂箔、锂粉和硅化锂粉) 容量高,但操作复杂、对环境要求高; 通过在正极中添加补锂添加剂的正极补锂路线胜在安全稳定性高,与现有电池生产工艺兼容性好。


未来负极补锂技术的研究应着重改进其在电池制造过程中的稳定性,开发与工业化生产相兼容且工艺简单的技术方案; 正极补锂则应着重开发补锂容量高,使用量小,补锂后残余量小的添加剂体系。

返回列表